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Motivation

Introduction

Typical statements/schemata of the form

1 7 + 5 = 12

2 ∼(φ& ∼φ)

3 ‘All bachelors are unmarried.’

. . . are at the core of our notion of analyticity.

There are some approaches for “reducing” 1 to 2.

In this talk we are going to sketch a partial “reduction” from 2 to 3.

I.e.: We sketch a conventional foundation of logic.
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The Unification of Analytic Truths

Frege’s Logicism

Frege’s Grundlagen der Arithmetik (1884):

“[The task of justifying is] that of finding the proof of the propo-
sition, and of following it up right back to the primitive truths. If,
in carrying out this process, we come only on general logical laws
and on definitions, then the truth is an analytic one[.]” (cf. §3)

Frege’s logicism in a nutshell:

• Hume’s Principle: #xFx = #xGx iff ∃f ∀x(Fx → Gf (x) & Gx →
Ff (x) & ∀y∃!zf (y) = z)

• Definition of 0: 0 = #xx ̸= x

• Definition of a successor function s: also by a 2nd-order formula (with
# and logical symbols only)

• Definition of N: 2nd-order formula

So, N (and math in general) can be reconstructed purely (2nd-order) logical.
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The Unification of Analytic Truths

Frege’s Logicism: Just to mention

Hence: analytical = definitional + logical

Although Frege’s approach failed . . .

“Nur in einem Punkte ist mir eine Schwierigkeit begegnet [. . . ]”
(cf. Russell to Frege, June, 16, 1902):

• Frege’s 2nd-order framework assumes class abstraction by co-
exensionality—Basic Law V:
{x : φ[x ]} = {x : ψ[x ]} iff ∀x(φ[x ] = ψ[x ])

• Hence generally (i.e. naively): ∃y∀x(x ∈ y iff φ[x ])

• Hence: y ∈ y iff y ̸∈ y

. . . the Fregean as well as post-Fregean meta-mathematical efforts are
generally accepted as unifying the concept of analyticity.
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Classical Foundations of Logic

Logical vs. Non-Logical: The Problem

We allow for a variable interpretation of the non-logical vocabulary, but for
none (or only a fixed one) for the logical vocab.

E.g.: I(φ) ∈ {0, 1}, I(F n) ⊆ Dn, I(c) ∈ D

But, e.g.: Some kind of:
I(&) = {⟨0, 0, 0⟩, ⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨1, 1, 1⟩}, I(∀) = . . .

Why not, e.g., I(&) ∈ {{⟨0, 0, x⟩, ⟨1, 0, y⟩, ⟨0, 1, z⟩, ⟨1, 1,w⟩} : x , y , z ,w ∈
{0, 1}}?

So we are looking for a justification of our demarcation between logical and
non-logical vocabulary.

That’s the question for providing an even more fundamental basis of rea-
soning.
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Classical Foundations of Logic

Quine’s Salva Congruitate Approach

According to Quine (1986), logical symbols are those symbols that are ele-
ments of the smallest categories of a language’s expressions.

Such categories are formed by salva congruitate substitution. E.g. ad-
verbs: ‘Willard philosophizes happily.’ ⇒ ‘Willard philosophizes [hap-
pily/perfectly].’, but not, e.g.: ‘Willard philosophizes [happily/Pegasus].’

Logical categories are the smallest categories of the language under investi-
gation.

A Conventional Foundation of Logic 7 / 16



Classical Foundations of Logic

Quine’s Salva Congruitate Approach: Problems

Quine’s theory has several problems:
• As an explication it is inadequate:

• The set of n–ary sentence operators forms logical categories. ✓
• The set of quantifiers forms logical categories. ✓
• The set of individual constants and relation symbols forms non-logical

categories. ✓
• The set of individual variables forms non-logical categories (although

perhaps proper in natural language). X
• The set of atomic formulas forms non-logical categories.

Problem cases: ⊥,⊤ X
• The identity symbol is no logical symbol. X

• A more fundamental problem: The concept of a formula is presupposed
in order to figure out salva congruitate substitutions.
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Classical Foundations of Logic

Tarski’s Invariance Approach

According to Tarsi (1986), logical symbols are those symbols that are most
neutral with respect to the topic in question.
Background idea: Logic is the most fundamental scientific discipline and
language we have. If you take all expressions of all sciences’ languages and
figure out which expressions appear in all of them, then you should get the
most topic-neutral ones.
Technically seen, topic-neutrality is expressed as invariantly operating on
permutations of the domain in question.
Just for the idea how this works:

• We label all elements of D with d1, d2, . . .

• We perform our operations, e.g., I(F ) = {d1}, I(c1) = d1 and I(c2) =
d2; so I(Fc1) = 1, I(Fc2) = 0; also I(Fc1&Fc2) = 0.

• By permuting our labelling of the elements of D, of course our I–
operation on F is not invariant under such a permutation, whereas the
&–operation is.
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Classical Foundations of Logic

Tarski’s Invariance Approach: Results and Problems

Tarski’s theory has the following advantages:

• As an explication it is adequate. ✓

• It’s a nice fleshing out of the topic-neutrality thought. ✓

• There is also a general theorem on the correctness of the theory: McGee
(1996) showed that every operation on D that is invariant under per-
mutation can be also defined by the standard logical operations (plus
infinite disjunction). ✓

But it has also some problems:

• The invariance of logical operations does not hold under domain-size
transformations. Put differently:
Why should the “size” of the “universe” (D) matter? X

• There are some strange logical operations as, e.g., H2O–negation
(H2Oφ iff ∼φ&‘Water is H2O.’)—cf. McGee (1996). X

For details cf. (Sher 2008).
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Classical Foundations of Logic

Belnap’s Structural Rules Approach

According to Belnap (1962), logical symbols are those symbols that can be
introduced into a basic system by introduction- and elimination rules.

Background idea: If the way an operation works can be “explained” by help
of basic logical rules alone, then it is argumentatively/logically relevant.

The basic logical system is just a system with the usual structural rules:

• Reflexivity: φ ⊢ φ
• Weakening: If φ1, . . . , φn ⊢ ψ, then φ1, . . . , φn, χ ⊢ ψ
• Contraction: If φ1, φ1, . . . , φn ⊢ ψ, then φ1, . . . , φn ⊢ ψ
• Permutation & Transitivity

Then the connectives and quantifiers may be introduced by help of their
usual introduction- and elimination rules. E.g.:
&I : φ,ψ ⊢ φ&ψ &E : φ&ψ ⊢ φ, φ&ψ ⊢ ψ
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Classical Foundations of Logic

Belnap’s Structural Rules Approach: Open questions

A problem and a solution of Belnap’s theory:
• Problem:

• Tonk-operator ∗ (cf. Prior 1960): ∗I : φ ⊢ φ ∗ ψ; ∗E : φ ∗ ψ ⊢ ψ.
• So we get φ ⊢ ψ which is absurd.

• Belnap’s solution:
• Only conservative rule-extensions are allowed.
• Where ‘conservative’ means that every derived (after adding the new

operator) rule that contains no new operator, can be already derived by
means of the structural (and beforehand added) rules alone.

• Clearly adding the tonk-rules is no conservative extension since φ ⊢ ψ
cannot be proven by means of the structural rules alone.

Open questions:

• There is no result on the general correctness of this approach. X

• There is a need of further justification of the structural rules. X

We will go on now with an approach concerned with the latter question.
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Conventional Foundation of Logic

Conventional Foundation of Logic
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Conventional Foundation of Logic

Theory of Definitions: Criteria

There are two classical constraints for conventions:
The complete “reduction” of usages by the criterion of eliminability:

Definition (Eliminability)

s is eliminable in T ′ w.r.t T iff for all φ ∈ LT ,s there is a ψ ∈ LT such that:
⊢T ′

(φ↔ ψ).

So, for every LT ,s -claim there must be a LT -claim that is T ′-equivalent in
order to satisfy eliminability of s.
The constraint of not smuggling in knowledge by the criterion of non-
creativity/conservativity (cf. Belnap’s solution before):

Definition (Non-creativity)

T ′ is a non-creative extension of T iff for all φ ∈ LT it holds: ⊢T ′
φ iff

⊢T φ.

So, old usages (extensions) remain unchanged.
A Conventional Foundation of Logic 13 / 16



Conventional Foundation of Logic

A Partial Definitional Basis of Logic

So, recall, we are looking for a further foundation of the structural rules of
the rules-approach to logical symbols.

We will do so by providing a set of “definitions” that should suffice to
“imitate” these rules (and allows also for a definition of the connectives).

A speciality: We define inference-relations (R) since here the definitional
rules are well investigated and they are pre-theoretically harmless:

• Partial definition of R1: x = y ⇒ xR1y

• Circular addition for R1 (transitivity): xR1y and yR1z ⇒ xR1z

• Characterisation of R2:
• Part. def. of R2 (contraction): x1 = x2 ⇒ x1, x2R2y iff x1R1y
• Part. def. of R2 (weakening): x1R1y ⇒ x1, x2R2y
• Circular addition for R2 (right-transitivity): y1R1y2 ⇒ (x1, x2R2y1 ⇒ x1, x2R2y2)
• Circular addition for R2 (left-transitivity and permutability):

x1R1x2 ⇒ (x2, x3R2y ⇒ x3, x1R2y)

• Definition of Rn (n ≥ 3) later on with &:
x1, . . . , xnRny iff x1, x2& . . .&xnR2y
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Conventional Foundation of Logic

A Partial Definitional Basis of Logic

With the help of these inference relations, one can define the connectives
also explicitly. E.g.: x&y =R z iff zR1x and zR1y and x , yR2z

NB: Of course one cannot prove for all x , y that there is a unique z satisfying
the definiens. But one can prove that all such z1 and z2 satisfying the
definiens are R–equivalent, i.e.: z1R1z2 and z2R1z1.

NB too: The multiple partial characterisation of R2 is still non-creative
since their combination is already logically valid.

Theorem (Observation)

• The definitional characterisation is correct.
(Replacing the Rs by ⊢ results in correct rules.)

• It is also complete (w.r.t. propositional logic pl).
(Due to compactness of pl we can re-write every pl-proof in our R-
notation; for all Rs there hold the respective structural rules (weaken-
ing, etc.); intro.- and elimination rules as in the definitions.)
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Conventional Foundation of Logic

Summary

1 Starting point: analytical = mathematical + logical + conventional

2 The logicistic programme: mathematical ⇒ logical

3 In case of success: analytical = logical + conventional

4 There is a problem of justifying logical with three approaches resulting:

• Substitution salva congruitate
• Invariance under domain-operation permutations
• Conservative expansion of structural rules

5 We sketched how one may try to (partially): logical ⇒ conventional

6 By this one my overcome the justification-problem of the structural
rules approach

7 And one may end up with: analytical = conventional
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